Karla de Melo Martins

Morfologia do Ferro Metálico em Briquetes Auto-Redutores

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE CIÊNCIA DOS MATERIAIS E METALURGIA Programa de Pós-Graduação em Engenharia Metalúrgica

Rio de Janeiro Setembro 2002

Karla de Melo Martins

Morfologia do Ferro Metálico em Briquetes Auto-Redutores

DISSERTAÇÃO DE MESTRADO

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em engenharia metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: Prof. José Carlos D'Abreu, D.Sc.

Rio de Janeiro Setembro de 2002

Karla de Melo Martins

Morfologia do Ferro Metálico em Briquetes Auto-Redutores

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Carlos D'Abreu

Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Prof. Hélio Marques Kohler

Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Prof. Antônio Cezar Faria Vilela

Universidade Federal do Rio Grande do Sul – UFRGS

Prof. Ney Augusto Dumont

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 de setembro de 2002

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Karla de Melo Martins

Engenheira Química, formada pela Pontificia Universidade Católica do Rio de Janeiro em 2000. Iniciará no mês de Outubro do ano corrente Doutorado Integral no Instituto de Aachen, Alemanha, através do convênio CAPES/DAAD.

Ficha Catalográfica

Martins, Karla de Melo

Morfologia do ferro metálico em briquetes autoredutores / Karla de Melo Martins; orientador: José Carlos D'Abreu. – Rio de Janeiro : PUC, Departamento de Ciência dos Materiais e Metalurgia, 2002.

[17], 88 f. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Ciência dos Materiais e Metalurgia.

Inclui referências bibliográficas.

1. Metalurgia – Teses. 2. Morfologia. 3. Autoredução. 4. Briquetes. 5. Metalização. I. D'Abreu, José Carlos. II Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título. PUC-Rio - Certificação Digital Nº 0024993/CA

Às minhas estrelas guia, vovó Maria, minha mãe, minhas irmãs Dinha e Queline e ao grande amor Eduardo.

Agradecimentos

Ao Prof. José Carlos D'Abreu, orientador e amigo, pela confiança depositada, conselhos e incentivos ministrados ao longo de nosso convívio, em especial por ter sido o meu 'portal' para a Metalurgia.

À minha família, por toda paciência e compreensão de todas as minhas ausências.

Ao Eduardo, pelo amor, apoio, dedicação, cumplicidade, segurança e carinho demonstrados ao longo dos 9 anos que nos conhecemos, que me fortalecem e animam a prosseguir com mais confiança.

À Tecnored – Tecnologia de Auto-Redução Ltda., pela matéria-prima gentilmente cedida para realização deste trabalho.

A todos os professores do DCMM pelo prazer e habilidade em lecionar, especialmente ao Mauricio Torem e Eduardo Brocchi pelos incentivos, ainda na época de graduação.

Aos amigos José Henrique Noldin Júnior, Raimundo N. Rodrigues Filho, e Noaldo pela inestimável ajuda ao longo deste trabalho e pelo tratamento fraterno.

Aos funcionários e amigos do DCMM, Luzinete Patrício, Paulo e Carlos, e em especial ao Marcelo Malheiros pelas horas 'extras' no MEV.

Ao Prof. e Coordenador do Laboratório de Geoquímica da Faculdade de Geologia da UERJ, René Rodrigues, por todas as análises de carbono e ao funcionário, Eduardo Laucas de Campos, pela presteza e boa vontade no atendimento.

Aos meus amigos pelo apoio e por estarem sempre presentes quando precisei, especialmente aos Corberllini, a "galera" da casa XXI, Isabela e Daniel.

À CAPES pelo suporte financeiro que viabilizou a execução do presente trabalho.

Finalmente, os meus agradecimentos a todos aqueles que contribuíram ao longo de vários anos de forma direta ou indireta, e àqueles que porventura venham a contribuir no futuro com observações corretivas e outras sugestões construtivas.

Resumo

Martins., Karla de Melo; D'Abreu, José Carlos. **Morfologia do Ferro Metálico em Briquetes Auto-Redutores.** Rio de Janeiro, 2002. 105 p. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho, aborda o estudo fenomenológico da metalização de briquetes auto-redutores durante a reação de redução na faixa de temperatura de 1000 à 1350°C, variando o tipo de atmosfera gasosa e o tempo de redução. Com base nos resultados obtidos, uma descrição das morfologias do ferro presentes na faixa de temperatura estudada são apresentadas. Para tanto foram utilizados: estereoscópios, microscópios óticos e eletrônico. As principais morfologias da fase metálica reduzida foram: a presença de glóbulos de ferro no interior do aglomerado e uma camada contínua de ferro metálico na superfície, entre 1200 -1350°C, sugerindo uma carbonetação mais intensa no interior, com a conseqüente fusão da fase metálica. Crescimento de whiskers de ferro, também foram observados nas temperaturas mais baixas (1000 - 1100°C). Na revisão bibliográfica foram feitos comentários sobre as tecnologias atuais e emergentes de produção de ferro primário e aço, e evidenciada a importância do estudo morfológico no esclarecimento do complexo mecanismo da cinética de redução de misturas de minério de ferro e carbono. Uma abordagem termodinâmica e cinética destes estudos também foi apresentada.

Palavras-chave

Morfologia; auto-redução; briquetes; metalização.

Abstract

Martins, Karla de Melo; D'Abreu, José Carlos (advisor). **Metallic iron phase morphology in self-reducing briquettes.** Rio de Janeiro, 2002. 105 p. MSc. Dissertation – Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

This work describes the morphological study of the metallization process of selfreducing briquettes containing fines of iron ore and coal. The reduction of briquettes was effected in a temperature range of 1.000 to 1.350°C varying reduction process duration and the gas atmosphere with nitrogen, carbon monoxide and carbon dioxide. The different phases of the morphology of the metallic iron were measured by the use of stereoscopic devices as well as optical and scanning electron microscopes. The main morphology occurred in a temperature range of 1.200 to 1.350°C generating iron globules in the center of the briquettes and a continuous metallic layer on the surface. The presence of a dendritic structure and the high carbon content of the iron globules indicate that the highest intensity of carburization occurred in the core regions of the briquettes followed by the melting phase of the iron. The whisker growth of iron was observed in the lower temperature range of 1.000 to 1.100°C. The bibliographic section makes references to the actual status and new developments in the research of processes based on composite iron ore agglomerates. It is common understanding that the iron morphology plays a key role in the kinetic mechanisms of reducing iron oxide and carbon mixtures.

Keywords

Morphology; self-reducing; briquettes; metallization.

Sumário

1. I	ntrodução	18
1.1	Objetivos	21
2. F	Fundamentos Termodinâmicos e Cinéticos dos	
F	Processos de Redução	22
2.1	Termodinâmica da redução dos óxidos de ferro	22
2.2	Estudo cinético da auto-redução de mistura de	
	minérios de ferro	26
2.3	Morfologias do ferro e fenomenologia da metalização	38
2.4	Tecnologias de auto-redução	52
2.5	Rota tradicional versus novas tecnologias: meta das	
	tecnologias emergentes	59
2.6	Aspectos ambientais e os processos de auto-	
	redução: geração e reciclagem de resíduos	62
3. Desenvolvimento Experimental		64
3.1	Materiais utilizados	64
3.2	Aparelhagem utilizada em laboratório	65
3.3	Equipamentos utilizados em escala de bancada	66
3.4	Caracterização das matérias-primas	66
3.5	Aparato experimental	68
3.6	Ensaio de redução	69
3.7	Variáveis estudadas	70
3.8	Análises químicas	70
3.9	Análise microscópicas das amostras	71
3.10	Análise do teor de carbono	72
4. <i>F</i>	Apresentação e Discussão dos Resultados	74
4.1	Análise microestrutural	74
4.2	Percentagem de carbono nas fases ferrosas	86

4.3 Gradientes de temperatura nos briquetes	entre o
centro e a periferia	90
5. Conclusões	93
6. Referências Bibliográficas	95
APÊNDICE A – Calibração do forno de redução	101
APÊNDICE B – Análise Química	103

Lista de figuras

Figura 1.0 - As duas maiores rotas para produção de	
aço: plantas integrada e semi – integrada.	19
Figura 2.1 - Diagrama Fe-C	22
Figura 2.2 - Diagrama Fe-O	23
Figura 2.3 - Diagrama de equilíbrio Fe–C–O, curva de	
Boudouard, pressão total de 1 atm e ac = 1	24
Figura 2.4 - Etapas do processo de auto–redução.	34
Figura 2.5 - Diagrama com as principais tecnologias	
emergentes de auto-redução	53
Figura 2.6 – Forno TECNORED de auto-redução	54
Figura 2.7 - Mecanismo de redução para uma pelota	
auto-redutora.	55
Figura 2.8 - Fluxograma do ITmk3	57
Figura 2.9 - Diagrama de fase Fe-C, mostrando a faixa	
de operação de algumas tecnologias	58
Figura 3.1- Aparato experimental utilizado	68
Figura 3.2 - Foto do aparato experimental usado	69
Figura 3.3 - Foto do analisador de Carbono, LECO-	
CS444.	72
Figura 4.1 - Whiskers de ferro, 1000°C; N2; 2000X; (a)	
20 e (b) 45min. MEV, elétrons secundários.	75
Figura 4.2 - Microestrutura gerada na região periférica	
do briquete. Morfologia tipicamente sinterizada,	
N2;1000°C; (a) 20min; 2000X e (b) 45min; 3000X. MEV,	
elétrons secundários.	75
Figura 4.3 – Microscopia ótica: (a) partículas de ferro	
metálico na região periférica do briquete;1200°C;	

N2;100X; 5min; (b) seção reta da camada	
externa;1350°C;N2; 25X; 5min.	76
Figura 4.4 - Agregado de partículas de ferro metálico.	
Região periférica do briquete. 1200°C; N2; 5min; 2000X.	
MEV : elétrons secundários.	76
Figura 4.5 - EDS realizado na partícula metálica, região	
assinalada da amostra na figura 4.4, 1200°C; 5min.	77
Figura 4.6 - Seção transversal da camada de briquete;	
1350°C; N2; 5min; 100X; seção da camada da figura 4.3	
 MEV, elétrons secundários. 	77
Figura 4.7 - Morfologia na região central do briquete,	
ensaiado a 1200°C; 45min; N2; (a) 10X e (b) 20X. MEV:	
elétrons secundários.	78
Figura 4.8 - (a) Morfologia na região central, (b)	
Morfologia na região periférica do briquete, ensaiados a	
1200C; 45min; N2; 100X. MEV, elétrons secundários.	78
Figura 4.9 - EDS, no ponto 1 da figura 4.8, 1200°C;	
45min; N2.	79
Figura 4.10 - Microestrutura de um glóbulo de ferro	
absorvendo os filamentos, 1200°C; 45min; N2; 1000X.	
MEV: (a) elétrons secundários; (b) elétrons	
retroespalhados.	79
Figura 4.11 - Microestrutura de um globulo de ferro	
envolto por filamentos de ferro; 1200° C; 45 min; N2;	00
390X. MEV, eletrons secundarios.	80
Algura 4.12 - EDS, no ponto 1 mostrado na figura 4.10,	00
1200°C, 4511111 , NZ.	80
rigura 4.13 - Aspecio externo dos globulos de leito da	
regiao central do briquete; 1200° C; 45min; NZ; (a) 300X	0.1
e (D) 100X. MEV, eletrons secundarios.	81
Fenômeno de absorção de um glóbulo menor por outro	
major. Região central do briguete: 1200°C: 45min: N2:	
maior. Regiao central do briquete, 1200 C, 40min, NZ,	

6250X. MEV : (a) elétrons secundários ; (b) elétrons	
retroespalhados.	81
Figura 4.15 - Microestrutura de um glóbulo de ferro.	
Região central do briquete,1200°C; 45min; N2; 100X.	
MEV, elétrons secundários.	82
Figura 4.16 - (a) Estrutura externa do glóbulo de ferro em	
forma de camadas. (b) Microestrutura de um agregado	
de pequenos glóbulos, ambos para briquete ensaiado a	
1200°C; N2; 45min; (a) 3000X e (b) 5000X. MEV,	
elétrons secundários.	82
Figura 4.17 - Microestrutura de veios de grafita. (a)	
1200°C; N2; 45 min; 500X; (b) 1350°C; N2; 10min;	
1500X. MEV, elétrons secundários.	83
Figura 4.18 - Microestruturas de veios de grafita para	
testes de 45min. (a) 1300°C; N2; 1500X; (b) 1350°C;	
N2; 500X. MEV, elétrons secundários.	83
Figura 4.19 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital 2%.	
Evidências de microestruturas dentríticas e bruta de	
fusão; 1200°C; N2; 45min ; 100X.	84
Figura 4.20 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital 2%.	
Evidências de microestruturas dentríticas; 1300°C; N2;	
45min e 25X.	84
Figura 4.21 - Microscopia ótica. Ataque químico de nital	
2%. Microestrutura dentrítica; 1300°C; N2; 45min e	
100X.	84
Figura 4.22 - Microscopia ótica: (a) amostra sem ataque;	
(b) amostra com ataque de nital 2%, 1350°C, 5min,	
100X, microestrutura de uma seção transversal da	
camada externa do briquete.	85
Figura 4.23 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital2%.	

Microestruturas dentríticas na superfície dos glóbulos;	
1350°C; N2; 10min e 25X.	85
Figura 4.24 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital 2%.	
Microestruturas dentríticas na superfície dos glóbulos;	
1350°C; N2; 10min e 100X.	85
Figura 4.25 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital 2%.	
Microestruturas dentríticas na superfície dos glóbulos;	
1350°C; N2; 45min e 25X.	86
Figura 4.26 - Microscopia ótica : (a) amostra sem ataque	
químico; (b) amostra com ataque químico de nital 2%.	
Microestruturas brutas de fusão; 1350°C; N2; 45min e	
100X.	86
Figura 4.27 – Variação com a temperatura do percentual	
de carbono da camada metalizada externa dos	
briquetes. Efeitos de N2 e CO.	87
Figura 4.28 - Variação com o tempo do percentual de	
carbono da camada metalizada externa dos briquetes	
em atmosfera de CO.	87
Figura 4.29 - Variação com a temperatura do percentual	
de carbono nos glóbulos de ferro. Efeitos do N2 e CO.	88
Figura 4.30 - Variação com o tempo do percentual de	
carbono nos glóbulos. Efeitos do N2 e CO.	88
Figura 4.31 - Variação com o tempo do percentual de	
carbono na camada e nos glóbulos em atmosfera de CO.	90
Figura 4.32 – Variação com a temperatura do percentual	
de carbono na camada e nos glóbulos dos briquetes, em	
atmosfera de N2.	90
Figura 4.33 - Gradiente de temperatura no briquete	
entre o centro e a periferia	91
Figura 4.34 - Gráfico A1: Calibração do forno de	
redução.	101

Figura 4.35 - Gráfico A2: Perfil térmico do forno de	
redução.	102
Figura 4.36 – Gráfico A3: Calibração do indicador digital	
de temperatura	102

Lista de tabelas

Tabela 2.3 - Destino dos principais resíduos sólidos	
recicláveis da produção de ferro primário e aço(20).	62
Tabela 3.1 - Composição do briquete	66
Tabela 3.2 – Composição do minério de ferro em base	
seca	67
Tabela 3.3 – Análise imediata do carvão mineral em	
base seca	67
Tabela 3.4 – Composição dos agentes fluxantes em	
base seca	68
Tabela 3.5 - Lista de amostras analisadas em	
microscópio	71
Tabela 3.6 - Amostras com teor de carbono analisados	73

"O dicionário é o único lugar onde o sucesso vem antes do trabalho"

Albert Einstein